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Abstract

Because hyperbaric oxygen treatment mobilizes bone marrow derived-stem/progenitor cells by a

free radical mediated mechanism, we hypothesized that there may be differences in mobilization

efficiency based on exposure to different oxygen partial pressures. Blood from twenty consecutive

patients was obtained before and after the 1st, 10th and 20th treatment at two clinical centers using

protocols involving exposures to oxygen at either 2.0 or 2.5 atmospheres absolute (ATA). Post-

treatment values of CD34+, CD45-dim leukocytes were always 2-fold greater than the pre-

treatment values for both protocols. Values for those treated at 2.5 ATA were significantly greater

than the 2.0 ATA treatment group by factors of 1.9 to 3-fold after the 10th and before and after the

20th treatments. Intracellular content of hypoxia inducible factors -1,-2, and -3, thioredoxin-1 and

poly-ADP-ribose polymerase assessed in permeabilized CD34+ cells with fluorophore-conjugated

antibodies were twice as high in all post- versus pre-treatment samples with no significant

differences between 2.0 and 2.5 ATA protocols. We conclude that putative progenitor cell

mobilization is higher with 2.5 versus 2.0 ATA treatments, and all newly mobilized cells exhibit

higher concentrations of an array of regulatory proteins.
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1. Introduction

Stem/progenitor cells (SPCs) capable of multipotent differentiation can be mobilized from

bone marrow and adipose tissue, enter the blood stream and migrate to peripheral sites

where they may facilitate recovery from injuries1–3. SPCs mobilization occurs after

wounding, physical exertion and in response to a variety of chemical agents4–10. Exposure

to hyperbaric oxygen (HBO2) appears to be a reliable way to mobilize SPCs in humans and

also has been shown in rodents and horses11–15. Animal studies indicate that one mechanism

is based on activation of nitric oxide synthase type 3 (NOS-3) in bone marrow stromal cells

with subsequent liberation of stem cell factor 11, 16. Separate from mobilization, HBO2

improves engraftment and differentiation of several progenitor cell types in organs such as

spleen, bone marrow, brain, peripheral nerve, pancreas, cartilage and heart 17–23. One area

of interest with circulating SPCs is identification of the sub-set having propensity to form

vascular endothelium, so-called endothelial progenitor cells (EPCs) 24. Quantification of

mobilized EPCs is based on flow cytometric detection of cell surface proteins and

phenotypic manifestations of laboratory-grown clones 24, 25. Cells mobilized by HBO2

exhibit many of these surface markers and when cultured, some clones show lectin binding

consistent with an endothelial phenotype 11, 12. Animal studies have documented that

HBO2-mobilized SPCs form blood vessels in vivo and hasten wound healing 14, 16, 26.

HBO2-mobilized SPCs have greater content of hypoxia inducible factors (HIFs) and

thioredoxin-1 (Trx), which in the murine model confers improved

neovascularization 12, 14, 27. Subsequent to HBO2 treatments of refractory wounds and

diabetic patients, the number of wound margin SPCs is increased and local HIFs and Trx

appear to be within these localized SPCs 12, 13. This suggests that SPCs play a role in

supplying factors required for wound healing. Hence, evaluating intracellular proteins may

have greater importance to assess SPCs function versus ex vivo manipulations. Assessment

of intracellular regulatory proteins of cells selected based on surface markers precludes

studying ex vivo cell growth because of need to permeabilize the cell membranes.

HBO2 treatment involves breathing 100 percent O2 at 2 to 3 atmospheres absolute (ATA)

pressure for 1.5 to 2 hours once or twice daily. HBO2 has been shown to improve refractory

diabetic wounds and delayed radiation injuries in randomized trials and use is supported by

independent evidence-based reviews 28–34. Several studies have failed to identify clinical

efficacy 35, 36. Notably, these studies involved exposures to 2.0 ATA or use of face masks

with questionable seals thus reducing the fraction of inspired O2; whereas several

prospective randomized trials documenting therapeutic benefit utilized pressures of 2.4 or

2.5 ATA in pure O2-filled chambers or using head-covering hoods 34, 37. Whether clinical

results may differ because of treatment protocols is unclear. The goal of this investigation

was to evaluate whether mobilization of cells with surface markers considered consistent

with SPCs (CD34+ and CD45-dim) and content of intracellular regulatory proteins differed

between two commonly used HBO2 protocols 38.
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2. Methods

2.1 Patient management protocols

All procedures were approved by Institutional Review Boards and patients signed informed

consent. A consecutive series of patients was approached who had been referred for HBO2

treatment because of complications from radiotherapy for cancer. On the basis of current

standard of care, they were to receive at least 20 HBO2 therapy sessions. Patient

characteristics are shown in Table 1. Venous blood was collected prior to and after the 1st,

10th and 20th HBO2 treatment into Cyto-Chex BCT test tubes (Streck, Inc., Omaha, NE) that

contain a proprietary preservative. Samples from the same day of treatment (pre- and post-

HBO2) were analyzed concurrently within 3 days of collection.

The standard Penn-based practice for delivering O2 involved placement of a balloon-

cushioned face mask that is normally used for continuous positive airway pressure

respiratory therapy. Treatments were conducted at 2.0 ATA for 2 h daily, 6 days/week.

Intermittently the fractional inspired O2 content in the mask was verified to be 100%.

Syracuse-based treatments were conducted in an acrylic chamber pressurized with pure O2

so that no special mask was required to assure 100% O2 delivery. Treatments were at 2.5

ATA for 90 minutes daily, 6 days/week.

2.2 Flow cytometry

CD34+ and CD45-dim cells and relative concentrations of intracellular proteins were

evaluated with a 10-color FACSCanto (Becton Dickinson, San Jose, CA) using standard

acquisition software following published techniques 12, 14, 27. Briefly, nucleated cells were

segregated from debris by DRAQ5 DNA staining and gates were based on true-negative

controls according to fluorescence-minus-one analysis. Anti-actin fluorescence confirmed

uniform cell permeabilization for intracellular protein analysis. Fluorescence/cell was

determined and used to compare pre- versus post-HBO2 cell populations.

2.3 Materials

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO). Antibodies were purchased

from the following sources: From BD Pharmingen, San Jose, CA. R-phycoerythrin (PE)-

conjugated mouse anti-human CD34 (Clone 581, a class III CD34 epitope; catalogue

number 555822), fluorescein isothiocyanate (FITC)-conjugated mouse anti-human CD45,

catalogue number 5558710 and allophycocyanin (APC)-conjugated mouse anti-human poly-

ADP ribose polymerase (PARP) catalogue number 558710; from R & D Systems,

Minneapolis, MN, APC-conjugated anti-human hypoxia inducible factor (HIF)-1, catalogue

number IC1935P; from Novus Biologicals, Littleton, CO, PE-conjugated anti-human HIF -2

(catalogue number NB100-122, FITC-conjugated anti-human HIF-3 (catalogue number

NB100-2529) and anti-human Trx catalogue number EPR 6111 with secondary from

Invitrogen, Grand Island, NY catalogue number T-2769.

2.4 Statistical analysis

Statistical analysis of stem cell numbers and quantitative changes in wound protein markers

were carried out by repeated measures analysis of variance followed by the Tukey test for
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multiple comparisons (SigmaStat, Jandel Scientific, San Rafael, CA). Statistical significance

was taken as p<0.05. Data sets were found to be normally distributed so results are displayed

as mean ± SE, n=20 for all groups. Pre- and post-treatment comparisons were made within

each type (2.0 ATA and 2.5 ATA) and between the 2.0 and 2.5 ATA treatments for each

number (1st, 10th and 20th) by two-tailed t-test.

3. Results

3.1 Circulating cells

Circulating CD34+ and CD45-dim leukocytes increased in blood from 20 consecutive

patients undergoing HBO2 therapy following a protocol of either 2.0 ATA or 2.5 ATA

(Figure 1). There were no significant differences in age, gender or radiation dose between

groups (Table 1). Following the 10th as well as before and after the 20th treatment cell

counts were significantly higher with the 2.5 ATA versus the 2.0 ATA protocol. Findings

were essentially the same whether normalized to volume of blood (left axis of Figure 1) or

to total circulating leukocyte count (right axis) because total leukocyte counts for patients

did not differ significantly over the course of the HBO2 treatments (data not shown).

3.2 Intracellular protein concentrations

Significant elevations of intracellular regulatory proteins were found in permeabilized

CD34+ cells after the 1st, 10th and 20th treatments with either protocol (Table 2). Because of

variations in fluorescence intensity due to different lots of antibody and also flow cytometer

laser intensities, only differences in cell fluorescence intensity for pre- and post-HBO2

samples analyzed on the same day were compared and not intensity across a 20 treatment

course.

4. Discussion

The results demonstrate that O2 partial pressure influences SPCs mobilization with

repetitive treatments. Whether this is due to augmented NOS-3 activation requires additional

study. SPCs mobilization in response to a variety of drugs is compromised by older age,

prior radiotherapy and use of several types of chemotherapy (e.g. platinum compounds,

alkylating agents, purine analogues and lenalidomide) 39. None of these agents were being

administered to patients during our study. We have reported previously that SPCs

mobilization in response to a single 2.0 ATA O2 exposure is the same between normal

adults and those exposed to radiotherapy11. Obviously, all patients in this study received

radiotherapy but there was no significant difference in radiation dosage or patient age

between the 2.0 and 2.5 ATA treatment groups (Table 1).

There were no notable deviations in the pattern of SPCs mobilization among the patients

despite taking a variety of medications listed in Table 1. Some of these medications are

known to have positive effects on SPCs mobilization (e.g. short term statin use, paclitaxel,

certain β-blockers such as nebivolol and carvedilol; while others have a negative impact on

mobilization (e.g. bisphosphonates, long-term use of statins and trimethoprim/

sulfamethoxazole) 40–46. None of the medications listed in Table 1 had been started in the

time frame while patients were receiving HBO2 and all had been prescribed for over 2
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months prior to patient enrollment. One patient in the 2.0 ATA group had HIV and one in

the 2.5 ATA group had renal failure and was undergoing dialysis. HIV does not impede the

efficacy of chemotherapeutic agent-mediated SPCs mobilization and renal failure may

modify mobilization by some drugs but does not completely abrogate responses 47–50.

Whether these disorders influence HBO2-mediated mobilization will require additional

study. Clearly, there are differences in mobilization mechanisms between chemotherapeutic

agents and HBO2. Contrary to many of the stem cell mobilization drugs HBO2 does not

activate platelets or elevate leukocyte counts which can be thrombogenic 13, 51–53.

Intracellular regulatory protein contents were elevated in all post-HBO2 samples with no

significant differences between protocols. Elevations are likely a characteristic of the bone

marrow SPCs population primed for mobilization and a higher percentage is released with

higher O2 dose. Lower protein levels in pre-HBO2 samples at the 10th and 20th treatments

may reflect preferential perivascular sequestration of newly mobilized cells and/or protein

degradation in cells remaining in the circulation for many hours. The difference in protein

contents of newly mobilized SPCs has not been appreciated in mobilization studies

involving chemotherapeutic agents. This is probably because responses to chemical agents

proceed over a much longer time course.

A weakness of this investigation is that perhaps alternative or additional surface markers

should be used to better characterize the mobilized cells. With regard to neovascularization

potential, this is difficult to determine given the ongoing debate over EPCs

characterization 38. Elevated intracellular proteins of HBO2 –mobilized cells suggest they

may have improved propensity for growth/differentiation based on animal studies 14, 27.

HIF-3 and PARP were probed because they provide evidence that cells were not merely

circulating endothelial cells or cells undergoing apoptosis. PARP levels would be expected

to be quite low in apoptotic cells 54. EPCs can be distinguished from mature CECs by

determining ‘clonogenic’ proliferative capacity, but not by flow cytometric evaluation of

surface markers 38. Our approach for assessing intracellular markers after membrane

permeabilization precludes ex vivo growth analysis, which is why we probed for HIF-3. In

animals we have found HBO2 –mobilized SPCs that form new blood vessels and hence not

CECs are well endowed with HIF-3, whereas HIF-3 normally is highly tissue restricted (to

thymus, lung and a lesser extent in brain, heart and kidney) 14, 55. Therefore, we conclude

that the cells mobilized by hyperoxia are SPCs and that treatment pressure influences

mobilization efficiency. Functional consequences of this response require further study.
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Highlights

1. The number of circulating CD34+-CD45-dim leukocytes are doubled in humans

within 2 hours of exposure to oxygen at 2.0 or 2.5 atmospheres absolute (ATA).

2. Repetitive exposures to 2.5 ATA leads to a further 1.9 to 3.0-fold elevation of

CD34+-CD45-dim cells with up to 20 treatments versus 2.0 ATA treatments.

3. Newly mobilized CD34+-CD45-dim leukocytes exhibit higher concentrations of

an array of regulatory proteins.
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Figure 1. Leukocyte mobilization by HBO2
The number of circulating CD34+,CD45-dim cells in blood before and after the 1st, 10th and

20th treatment of 20 patients exposed to either at 2.0 or 2.5 ATA. Data were normalized to

blood volume (grey boxes quantified on the left ordinate axis) or to total circulating

leukocyte count (black boxes quantified on the right ordinate axis) and are mean ± SE, *

indicates significant difference between 2.0 and 2.5 ATA groups (ANOVA). All post-HBO2

values are significantly different from pre-HBO2 values at each treatment time in both

groups (t-test).
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Table 2

Intracellular protein content (fold-elevation post- versus prior to HBO2).

Protein Treatment # 2.0 ATA Protocol 2.5 ATA Protocol

HIF-1 1 2.35 ± 0.24 3.29 ± 0.55

10 2.65 ± 0.21 2.67 ± 0.22

20 2.54 ± 0.38 2.77 ± 0.26

HIF-2 1 2.33 ± 0.24 2.68 ± 0.30

10 2.48 ± 0.15 2.54 ± 0.20

20 2.54 ± 0.23 2.60 ± 0.21

HIF-3 1 2.27 ± 0.22 2.67 ± 0.31

10 2.38 ± 0.24 2.29 ± 0.15

20 2.43 ± 0.26 2.27 ± 0.15

Trx 1 2.34 ± 0.24 2.51 ± 0.26

10 2.36 ± 0.22 2.28 ± 0.13

20 2.44 ± 0.24 2.50 ± 0.29

PARP 1 2.36 ± 0.22 2.64 ± 0.26

10 2.39 ± 0.22 2.42 ± 0.19

20 2.57 ± 0.27 2.47 ± 0.22

Data show mean ± SE fold-differences in fluorescence of post-versus pre-HBO2 permeabilized CD34+ cells using fluorophore-conjugated

antibodies to proteins shown in column 1. All post-HBO2 values are significantly different from pre-HBO2 and there are no significant differences

between the 2.0 and 2.5 ATA protocols.
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