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Abstract

Because hyperbaric oxygen treatment mobilizes bone marrow derived-stem/progenitor cells by a
free radical mediated mechanism, we hypothesized that there may be differences in mobilization
efficiency based on exposure to different oxygen partial pressures. Blood from twenty consecutive
patients was obtained before and after the 15t, 10t and 20™" treatment at two clinical centers using
protocols involving exposures to oxygen at either 2.0 or 2.5 atmospheres absolute (ATA). Post-
treatment values of CD34+, CD45-dim leukocytes were always 2-fold greater than the pre-
treatment values for both protocols. Values for those treated at 2.5 ATA were significantly greater
than the 2.0 ATA treatment group by factors of 1.9 to 3-fold after the 10t and before and after the
20t treatments. Intracellular content of hypoxia inducible factors -1,-2, and -3, thioredoxin-1 and
poly-ADP-ribose polymerase assessed in permeabilized CD34+ cells with fluorophore-conjugated
antibodies were twice as high in all post- versus pre-treatment samples with no significant
differences between 2.0 and 2.5 ATA protocols. We conclude that putative progenitor cell
mobilization is higher with 2.5 versus 2.0 ATA treatments, and all newly mobilized cells exhibit
higher concentrations of an array of regulatory proteins.
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1. Introduction

Stem/progenitor cells (SPCs) capable of multipotent differentiation can be mobilized from
bone marrow and adipose tissue, enter the blood stream and migrate to peripheral sites
where they may facilitate recovery from injuries1=3. SPCs mobilization occurs after
wounding, physical exertion and in response to a variety of chemical agents*~19, Exposure
to hyperbaric oxygen (HBO,) appears to be a reliable way to mobilize SPCs in humans and
also has been shown in rodents and horses1-15, Animal studies indicate that one mechanism
is based on activation of nitric oxide synthase type 3 (NOS-3) in bone marrow stromal cells
with subsequent liberation of stem cell factor 1. 16, Separate from mobilization, HBO,
improves engraftment and differentiation of several progenitor cell types in organs such as
spleen, bone marrow, brain, peripheral nerve, pancreas, cartilage and heart 17-23, One area
of interest with circulating SPCs is identification of the sub-set having propensity to form
vascular endothelium, so-called endothelial progenitor cells (EPCs) 24. Quantification of
mobilized EPCs is based on flow cytometric detection of cell surface proteins and
phenotypic manifestations of laboratory-grown clones 24 25, Cells mobilized by HBO,
exhibit many of these surface markers and when cultured, some clones show lectin binding
consistent with an endothelial phenotype 1112, Animal studies have documented that
HBO,-mobilized SPCs form blood vessels in vivo and hasten wound healing 14 16. 26,

HBO,-mobilized SPCs have greater content of hypoxia inducible factors (HIFs) and
thioredoxin-1 (Trx), which in the murine model confers improved

neovascularization 12: 1427, Sybsequent to HBO, treatments of refractory wounds and
diabetic patients, the number of wound margin SPCs is increased and local HIFs and Trx
appear to be within these localized SPCs 12 13, This suggests that SPCs play a role in
supplying factors required for wound healing. Hence, evaluating intracellular proteins may
have greater importance to assess SPCs function versus ex vivo manipulations. Assessment
of intracellular regulatory proteins of cells selected based on surface markers precludes
studying ex vivo cell growth because of need to permeabilize the cell membranes.

HBO, treatment involves breathing 100 percent O at 2 to 3 atmospheres absolute (ATA)
pressure for 1.5 to 2 hours once or twice daily. HBO, has been shown to improve refractory
diabetic wounds and delayed radiation injuries in randomized trials and use is supported by
independent evidence-based reviews 28-34, Several studies have failed to identify clinical
efficacy 35 36. Notably, these studies involved exposures to 2.0 ATA or use of face masks
with questionable seals thus reducing the fraction of inspired O,; whereas several
prospective randomized trials documenting therapeutic benefit utilized pressures of 2.4 or
2.5 ATA in pure Oo-filled chambers or using head-covering hoods 34 37, Whether clinical
results may differ because of treatment protocols is unclear. The goal of this investigation
was to evaluate whether mobilization of cells with surface markers considered consistent
with SPCs (CD34+ and CD45-dim) and content of intracellular regulatory proteins differed
between two commonly used HBO protocols 3.
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2. Methods

2.1 Patient management protocols

All procedures were approved by Institutional Review Boards and patients signed informed
consent. A consecutive series of patients was approached who had been referred for HBO,
treatment because of complications from radiotherapy for cancer. On the basis of current
standard of care, they were to receive at least 20 HBO, therapy sessions. Patient
characteristics are shown in Table 1. Venous blood was collected prior to and after the 15,
10 and 20" HBO, treatment into Cyto-Chex BCT test tubes (Streck, Inc., Omaha, NE) that
contain a proprietary preservative. Samples from the same day of treatment (pre- and post-
HBO,) were analyzed concurrently within 3 days of collection.

The standard Penn-based practice for delivering O, involved placement of a balloon-
cushioned face mask that is normally used for continuous positive airway pressure
respiratory therapy. Treatments were conducted at 2.0 ATA for 2 h daily, 6 days/week.
Intermittently the fractional inspired O, content in the mask was verified to be 100%.
Syracuse-based treatments were conducted in an acrylic chamber pressurized with pure O,
so that no special mask was required to assure 100% O, delivery. Treatments were at 2.5
ATA for 90 minutes daily, 6 days/week.

2.2 Flow cytometry

CD34+ and CD45-dim cells and relative concentrations of intracellular proteins were
evaluated with a 10-color FACSCanto (Becton Dickinson, San Jose, CA) using standard
acquisition software following published techniques 12 14. 27, Briefly, nucleated cells were
segregated from debris by DRAQ5 DNA staining and gates were based on true-negative
controls according to fluorescence-minus-one analysis. Anti-actin fluorescence confirmed
uniform cell permeabilization for intracellular protein analysis. Fluorescence/cell was
determined and used to compare pre- versus post-HBO, cell populations.

2.3 Materials

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO). Antibodies were purchased
from the following sources: From BD Pharmingen, San Jose, CA. R-phycoerythrin (PE)-
conjugated mouse anti-human CD34 (Clone 581, a class 111 CD34 epitope; catalogue
number 555822), fluorescein isothiocyanate (FITC)-conjugated mouse anti-human CD45,
catalogue number 5558710 and allophycocyanin (APC)-conjugated mouse anti-human poly-
ADP ribose polymerase (PARP) catalogue number 558710; from R & D Systems,
Minneapolis, MN, APC-conjugated anti-human hypoxia inducible factor (HIF)-1, catalogue
number IC1935P; from Novus Biologicals, Littleton, CO, PE-conjugated anti-human HIF -2
(catalogue number NB100-122, FITC-conjugated anti-human HIF-3 (catalogue number
NB100-2529) and anti-human Trx catalogue number EPR 6111 with secondary from
Invitrogen, Grand Island, NY catalogue number T-2769.

2.4 Statistical analysis

Statistical analysis of stem cell numbers and quantitative changes in wound protein markers
were carried out by repeated measures analysis of variance followed by the Tukey test for
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multiple comparisons (SigmaStat, Jandel Scientific, San Rafael, CA). Statistical significance
was taken as p<0.05. Data sets were found to be normally distributed so results are displayed
as mean + SE, n=20 for all groups. Pre- and post-treatment comparisons were made within
each type (2.0 ATA and 2.5 ATA) and between the 2.0 and 2.5 ATA treatments for each
number (15¢, 10t and 20™) by two-tailed t-test.

3.1 Circulating cells

Circulating CD34+ and CD45-dim leukocytes increased in blood from 20 consecutive
patients undergoing HBO, therapy following a protocol of either 2.0 ATA or 2.5 ATA
(Figure 1). There were no significant differences in age, gender or radiation dose between
groups (Table 1). Following the 10t as well as before and after the 20t treatment cell
counts were significantly higher with the 2.5 ATA versus the 2.0 ATA protocol. Findings
were essentially the same whether normalized to volume of blood (left axis of Figure 1) or
to total circulating leukocyte count (right axis) because total leukocyte counts for patients
did not differ significantly over the course of the HBO, treatments (data not shown).

3.2 Intracellular protein concentrations

Significant elevations of intracellular regulatory proteins were found in permeabilized
CD34+ cells after the 15, 101" and 20t treatments with either protocol (Table 2). Because of
variations in fluorescence intensity due to different lots of antibody and also flow cytometer
laser intensities, only differences in cell fluorescence intensity for pre- and post-HBO,
samples analyzed on the same day were compared and not intensity across a 20 treatment
course.

4. Discussion

The results demonstrate that O, partial pressure influences SPCs mobilization with
repetitive treatments. Whether this is due to augmented NOS-3 activation requires additional
study. SPCs mobilization in response to a variety of drugs is compromised by older age,
prior radiotherapy and use of several types of chemotherapy (e.g. platinum compounds,
alkylating agents, purine analogues and lenalidomide) 3°. None of these agents were being
administered to patients during our study. We have reported previously that SPCs
mobilization in response to a single 2.0 ATA O, exposure is the same between normal
adults and those exposed to radiotherapy1. Obviously, all patients in this study received
radiotherapy but there was no significant difference in radiation dosage or patient age
between the 2.0 and 2.5 ATA treatment groups (Table 1).

There were no notable deviations in the pattern of SPCs mobilization among the patients
despite taking a variety of medications listed in Table 1. Some of these medications are
known to have positive effects on SPCs mobilization (e.g. short term statin use, paclitaxel,
certain p-blockers such as nebivolol and carvedilol; while others have a negative impact on
mobilization (e.g. bisphosphonates, long-term use of statins and trimethoprim/
sulfamethoxazole) 40-46. None of the medications listed in Table 1 had been started in the
time frame while patients were receiving HBO, and all had been prescribed for over 2
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months prior to patient enrollment. One patient in the 2.0 ATA group had HIV and one in
the 2.5 ATA group had renal failure and was undergoing dialysis. HIV does not impede the
efficacy of chemotherapeutic agent-mediated SPCs mobilization and renal failure may
modify mobilization by some drugs but does not completely abrogate responses 4750,
Whether these disorders influence HBO,-mediated mobilization will require additional
study. Clearly, there are differences in mobilization mechanisms between chemotherapeutic
agents and HBO». Contrary to many of the stem cell mobilization drugs HBO, does not
activate platelets or elevate leukocyte counts which can be thrombogenic 13: 51-53,

Intracellular regulatory protein contents were elevated in all post-HBO, samples with no
significant differences between protocols. Elevations are likely a characteristic of the bone
marrow SPCs population primed for mobilization and a higher percentage is released with
higher O, dose. Lower protein levels in pre-HBO, samples at the 10t and 20 treatments
may reflect preferential perivascular sequestration of newly mobilized cells and/or protein
degradation in cells remaining in the circulation for many hours. The difference in protein
contents of newly mobilized SPCs has not been appreciated in mobilization studies
involving chemotherapeutic agents. This is probably because responses to chemical agents
proceed over a much longer time course.

A weakness of this investigation is that perhaps alternative or additional surface markers
should be used to better characterize the mobilized cells. With regard to neovascularization
potential, this is difficult to determine given the ongoing debate over EPCs
characterization 38. Elevated intracellular proteins of HBO, —mobilized cells suggest they
may have improved propensity for growth/differentiation based on animal studies 14 27,
HIF-3 and PARP were probed because they provide evidence that cells were not merely
circulating endothelial cells or cells undergoing apoptosis. PARP levels would be expected
to be quite low in apoptotic cells >4, EPCs can be distinguished from mature CECs by
determining “‘clonogenic’ proliferative capacity, but not by flow cytometric evaluation of
surface markers 38. Our approach for assessing intracellular markers after membrane
permeabilization precludes ex vivo growth analysis, which is why we probed for HIF-3. In
animals we have found HBO, —mobilized SPCs that form new blood vessels and hence not
CECs are well endowed with HIF-3, whereas HIF-3 normally is highly tissue restricted (to
thymus, lung and a lesser extent in brain, heart and kidney) 1495, Therefore, we conclude
that the cells mobilized by hyperoxia are SPCs and that treatment pressure influences
mobilization efficiency. Functional consequences of this response require further study.
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Figure 1. Leukocyte mobilization by HBO,
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CD34+/CD45 SPCs/100,000 WBC

The number of circulating CD34+,CD45-dim cells in blood before and after the 15t, 10t and
20! treatment of 20 patients exposed to either at 2.0 or 2.5 ATA. Data were normalized to
blood volume (grey boxes quantified on the left ordinate axis) or to total circulating
leukocyte count (black boxes quantified on the right ordinate axis) and are mean + SE, *
indicates significant difference between 2.0 and 2.5 ATA groups (ANOVA). All post-HBO»
values are significantly different from pre-HBO, values at each treatment time in both

groups (t-test).
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Table 2

Intracellular protein content (fold-elevation post- versus prior to HBO,).

Protein | Treatment# | 2.0 ATA Protocol | 2.5 ATA Protocol

HIF-1 1 235+0.24 3.29+£0.55
10 2.65+0.21 2.67+0.22

20 2.54+0.38 2.77+0.26

HIF-2 1 2.33+0.24 2.68+0.30
10 248 £0.15 254 +0.20

20 2.54+0.23 260+0.21

HIF-3 1 2.27+0.22 2.67+0.31
10 2.38+0.24 229+0.15

20 2.43+0.26 2.27+0.15

Trx 1 2.34+0.24 251+0.26
10 2.36 £0.22 2.28+0.13

20 244 +0.24 2.50+0.29

PARP 1 2.36 £0.22 2.64 £0.26
10 2.39+0.22 242 +0.19

20 257+0.27 247+0.22

Data show mean + SE fold-differences in fluorescence of post-versus pre-HBO2 permeabilized CD34+ cells using fluorophore-conjugated
antibodies to proteins shown in column 1. All post-HBO? values are significantly different from pre-HBO2 and there are no significant differences
between the 2.0 and 2.5 ATA protocols.
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