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Background: Recent clinical studies in stroke and traumatic brain injury (TBI) victims

suffering chronic neurological injury present evidence that hyperbaric oxygen therapy

(HBOT) can induce neuroplasticity.

Objective: To assess the neurotherapeutic effect of HBOT on prolonged

post-concussion syndrome (PPCS) due to TBI, using brain microstructure imaging.

Methods: Fifteen patients afflicted with PPCSwere treatedwith 60 daily HBOT sessions.

Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced

(DSC) and Diffusion Tensor Imaging (DTI) MR sequences. Cognitive evaluation was

performed by an objective computerized battery (NeuroTrax).

Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years) from injury.

After HBOT, DTI analysis showed significantly increased fractional anisotropy values and

decreased mean diffusivity in both white and gray matter structures. In addition, the

cerebral blood flow and volume were increased significantly. Clinically, HBOT induced

significant improvement in the memory, executive functions, information processing

speed and global cognitive scores.

Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can

be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can

induce cerebral angiogenesis and improve both white and gray microstructures

indicating regeneration of nerve fibers. The micro structural changes correlate with the

neurocognitive improvements.

Keywords: hyperbaric oxygen, DTI, tractography, angiogenesis, MRI, perfusion, TBI, post-concussion

INTRODUCTION

Traumatic brain injury (TBI) is a significant public health concern in military and civilian
populations (Chiu and LaPorte, 1993). The estimated number of TBI cases occurring each year
is 10 million globally and 1.7–3.8 million in the United States alone. 75–90% of those are defined as
mild TBI (mTBI) (Selassie et al., 2013; Marin et al., 2014).
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The post-concussion syndrome (PCS) is a complex of
symptoms consisting of headaches, dizziness, imbalance, vertigo,
fatigue, changes in sleep pattern, neuropsychiatric symptoms
(e.g., behavioral and mood changes, confusion), and cognitive
impairments (in memory, attention, concentration and executive
functions) (McCauley et al., 2005). PCS is most often described in
the setting of mTBI, but may also occur after moderate and severe
TBI. In Eight to Ninty percent of mTBI cases, the symptoms
fade away in 7–10 days (McCrory et al., 2005; Hadanny and
Efrati, 2016). Still, in 10–20 percent, PCS may persist for weeks
or months due to structural and/or metabolic brain damage.
Twenty-five to thirty-three percent of those retain a permanent
brain injury and experience persistent PCS; the symptoms turn
chronic and endure more than 6 months (Kashluba et al., 2004;
Bazarian et al., 2005; Iverson, 2005; Sterr et al., 2006; King and
Kirwilliam, 2011).

The sensitivity of classic anatomical brain imaging techniques,
such as Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI), is generally not sufficient for detection of
the pathophysiologic effects of mTBI. New techniques are
increasingly utilized for objective evaluation of brain damage.
Diffuse Tensor Imaging (DTI) can reveal the combination of
axonal injury and secondary gliosis with local microvascular
injury (Niogi and Mukherjee, 2010). Dynamic susceptibility
contrast MR perfusion can demonstrate reduced cerebral blood
flow (CBF), global and regional, as well as cerebral blood volume
(CBV) (Tal et al., 2015).

The existing pharmacologic and non-pharmacologic
treatments have mostly failed to elicit efficacious results in
both the clinical symptoms and the pathophysiologic cascade
leading to permanent brain injury (Hadanny and Efrati, 2016).
In recent years, both basic (animal models) (Neubauer and
James, 1998; Zhang et al., 2005; Vlodavsky et al., 2006; Chen
et al., 2010; Huang and Obenaus, 2011; Lin et al., 2012; Efrati
and Ben-Jacob, 2014) and clinical studies (Shi et al., 2003, 2006;
Barrett et al., 2004; Golden et al., 2006; Wright et al., 2009;
Harch et al., 2012; Boussi-Gross et al., 2013; Tal et al., 2015) have
shown that hyperbaric oxygen therapy (HBOT) can improve
PCS by targeting the basic pathological processes responsible
for post-concussion symptoms (Hadanny and Efrati, 2016). In
our previous study, it was evident that HBOT can induce brain
angiogenesis, demonstrated by perfusion MRI with significant
increase in CBF and CBV following HBOT along with significant
cognitive improvement in patients post TBI (Tal et al., 2015).

The current study was aimed at evaluating the effects of HBOT
on brain microstructure in chronic neurological deficiencies
stemming from TBI. This has not been studied in humans so far.

METHODS

A retrospective analysis of patients suffering from chronic
neurocognitive impairment due to TBI, treated at Sagol Center
for Hyperbaric Medicine and Research at Assaf Harofeh Medical
Center, Israel, between September 2013 and December 2015.
The study was approved by the Institutional Review Board of

Abbreviations: CBF, cerebral blood flow; CBV, cerebral blood volume.

the hospital (0030-15-ASF) and registered in the US National
Institute of Health Clinical Trials registry (NCT02452619).

Inclusion criteria: Patients with chronic neurocognitive
impairment started only after TBI, persisting over 6 months
who underwent two MRI brain imaging (including DTI and
DSC sequences) and two neurocognitive tests, pre- and post-
hyperbaric oxygen therapy (HBOT). All patients applied for
HBOT of their own volition. Patients with other neurological
conditions were excluded from the study’s cohort.

The classification of TBI was based on the American Congress
of Rehabilitation Medicine (ACRM) and the Centers of Disease
Control (CDC), where mTBI is defined as altered brain function
engendered by external forces with one or more of the following:
loss of consciousness with duration of 0–30min, post-traumatic
amnesia with duration of less than 24 h, and Glasgow Coma Scale
grade of 13–15 (Malec et al., 2007). GCS score of 3–8, or post-
traumatic amnesia of more than 7 days, or loss of consciousness
for more than 24 h is classified as severe TBI; GCS score of 9–12,
or post-traumatic amnesia of 1–7 days, or loss of consciousness
between 30min and 24 h, is classified as moderate TBI (Malec
et al., 2007).

Hyperbaric Oxygen Treatment
Patients were treated in a multiplace hyperbaric chamber
(HAUX-Life-Support GmbH) for 60 daily hyperbaric sessions,
5 days a week. Each session consisted of 90min of exposure
to 100% oxygen at 2 ATA. Acceptable compression and
decompression rates of 0.8 meter per minute were employed.
Oxygen was delivered by tight masks.

MRI Scan Protocol
All patients had MRI scans 1–2 weeks before and after
HBOT. Imaging was done with a 3 Tesla system (20 channels,
MAGNETOM Skyra, Siemens Medical Solutions) with a
multichannel head coil as a receiver coil. The MRI protocol
included the following sequences: T2 weighted, T1 weighted,
FLAIR, susceptibility weighted imaging (SWI), dynamic
susceptibility contrast enhancement (DSC), and diffusion tensor
imaging (DTI). The MRI, DTI, and DSC sequences’ parameters
are detailed in the supplementary material (SI-1). The injected
gadolinium (0.5 mmol/ml) dosage was 0.2 ml/kg/patient.

MRI Analysis
MRI analysis was performed by WiseImage (Hod Hasharon,
Israel, http://www.wise-image.com).

DSC Analysis
Images were corrected for motion using SPM software (version
12, UCL, London, UK). DSC analysis was performed as described
in previous studies (Østergaard et al., 1996a,b part I and II)
using in-house software written in Matlab R2011 (Mathworks,
Natick, MA). Detailed description is found in the Supplementary
Material SI-1. In short, MR signal intensity was converted to
Gd concentration, fitted to the gamma variate function and
deconvolved on a voxel-by-voxel basis to calculate the CBF, CBV,
and MTT (Mean Transient Time) maps. Smoothing of 8mm full
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width at half maxima (FWHM) was performed on the perfusion
maps using the SPM software.

DTI Analysis
Motion and Echo planar imaging (EPI) correction and
regularization of the DWI volumes as well as calculation of
DTI maps (MD = mean diffusivity, FA = fractional anisotropy,
AD = axial diffusivity, RD = radial diffusivity maps) were
done using ExploreDTI software (Leemans et al., 2009). Two
analysis types were performed: voxel-based analysis and fiber
tracking. Detailed description is found in the Supplementary
Material SI-1. In short, paired t-test was performed using voxel-
based analysis, generating statistical parametric maps. Fiber
tracking was applied using Explore DTI software in order to
plot 8 fiber tracts for each patient: Uncinate fasciculus (UF),
Cingulum, inferior longitudinal fasciculus (ILF), and Inferior
fronto-occipital fasciculus (IFOF), in both hemispheres. After
the tracking procedure, a mask was created from the tracts
matrices of all subjects in order to create a tract mask. Overall, 8
masks were created for each subject: four fiber tracts (UF, fornix,
cingulum, ILF), in both hemispheres. The tract masks of the
different patients were registered to a tract mask of one patient.

Cognitive Assessment
The assessment of cognitive functions was done by NeuroTrax
computerized cognitive tests (NeuroTrax Corp., TX) (Dwolatzky
et al., 2003). The neurocognitive battery by Neurotrax is
a validated computerized cognitive evaluation, which was
specifically designed to TBI patients. These tests evaluate
various aspects of brain function and incorporate Verbal
Memory (immediate and delayed recognition), Non-Verbal
Memory (immediate and delayed recognition), Go-No-Go
Response Inhibition, Problem Solving, Stroop Interference,
Finger Tapping, Catch Game, Staged Information Processing
Speed (single digit, two-digit and three-digit arithmetic), Verbal
Function, and Visual Spatial Processing. Cognitive index scores
were computed from the normalized outcome parameters for
the following domains: executive function, memory, attention,
speed of information processing, visual spatial, verbal function
and motor skills (Thaler et al., 2012; Achiron et al., 2013; Zur
et al., 2015). The verbal domain score was excluded because only
8 patients (53%) had reliable calculated verbal domains. A global
cognitive score was computed as the average of all index scores
for each individual.

The NeuroTrax data were uploaded to the NeuroTrax central
server, and outcome parameters were automatically calculated
using a software blind to diagnosis or testing site. To account
for the effects of age and education on cognitive performance,
each outcome parameter was normalized and fit to an IQ-like
scale (mean = 100, S.D. = 5) according to age and education.
The normative data used by NeuroTrax consist of test data from
cognitively healthy individuals in controlled research studies at
more than 10 sites (Doniger, 2014).

Specifically, the patients received two different versions of
the NeuroTrax test battery before and after HBOT so as to
produce minimal learning effects upon repeated administration.
Test-retest reliability for those versions was found to be high

(Schweiger et al., 2003; Melton, 2005). Each cognitive domain
score was calculated out of 3–5 different tests. It had 3 different
forms of each test - out of which we used one for pre exam and
another for the post test. This is a strong feature of these tests
as it reduces the “learning effect” with a good test/retest validity.
The fact that each index is referred to more than one test-score
ensures that the index is associated with a cognitive domain score
rather than with a test-dependent score.

Statistical Analysis
In addition to the MRI analysis described above, continuous
data were expressed as means ± standard errors. The normal
distribution for all variables was tested by means of the
Kolmogorov-Smirnov test. The mean differences between
cognitive index scores before and after HBOT were analyzed
using two-tailed paired t-tests or a Wilcoxon signed-rank test.
The alpha level was set to 0.05. Data were statistically analyzed
using SPSS software (version 22.0).

RESULTS

Patients
Fifteen patients with chronic cognitive impairment due to TBI
who were treated at the Sagol Center for Hyperbaric Medicine
and Research between September 2013 and December 2015
fulfilled the inclusion criteria.

The mean age was 35.8 ± 3.5 years (21–70), and 53% (8/15)
were males. All patients had documented traumatic brain injury
6 months to 27 years (mean 6.7 ± 2.1 years) prior to HBOT.
Seven patients (46.7%) suffered frommoderate to severe TBI, and
8 (53.3%) suffered from PCS after mTBI. See patients’ baseline
characteristics in Table 1. Baseline standard MRI findings for
each of the patients are summarized in SI-2.

TABLE 1 | Patients’ baseline characteristic.

Age (years) 35.8 ± 3.5

Sex

Males 8 (53.3%)

Females 7 (46.7%)

Time from trauma (years) 6.7 ± 2.1

Severity of trauma

Mild 8 (53.3%)

Moderate 2 (13.3%)

Severe 5 (33.4%)

Trauma type

MVA 13 (86.7%)

Fall 1 (6.7%)

Assault 1 (6.7%)

Medications

SSRI 3 (20%)

Benzodiazepines 1 (6.7%)

Opiates 2 (13.3%)
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Neurocognitive Function
HBOT induced a considerable improvement in the global
cognitive score, with a mean change of 8.1 ± 1.5 and a relative
change of 9.6± 1.9% (p= 0.0001). Memory, executive functions
and information processing speed showed the most striking
improvements (>15% relative change) withmean changes of 10.5
± 2.4 (p = 0.001), 11.3 ± 2.7 (p = 0.0001) and 13.1 ± 2.7 (p
= 0.0001), respectively. Attention increased by 16.1 ± 6.3% post
HBOT but did not reach statistical significance (p= 0.06). There
were no differences in neurocognitive scores (mean and relative
changes) of patients taking SSRI/Opiates/Benzodiazpeines drugs
compared to patients without them (p > 0.2).

The effect of HBOT on the patients’ cognitive functions is
summarized in Figure 1 and Table 2.

Brain Microstructure Integrity Changes
Voxel-based DTI analysis was compared before and after HBOT
using paired t-test. FA and MD whole brain maps are depicted
in Figures 2, 3, and show the statistically significant increase in
FA (yellow in Figure 2) and decrease in MD (blue in Figure 3)
average values.

Regional Changes in Brain Microstructure
Integrity
Statistically significant increase in FA was found in regions
related to motor function (internal capsule, midbrain),
association fiber tracts inferior fronto-occipial fasciculus (IFOF),
inferior longitudinal fasciculus (ILF), superior longitudinal
fasciculus (SLF), Cingulum and in the genu of the Corpus
Callosum.

Decrease in FA was found in areas related to the visual
system (superior colliculi, calcarine sulcus) and other cognitive
areas (thalamus, and posterior cingulate gyrus). Graphs of FA in
significant clusters are presented in Figures 4A,B.

Decrease in MD was found in the frontal lobe (anterior
cingulate gyrus, posterior orbital gyrus, Precuneus, superior
frontal gyrus, Uncinate fasciculus, and frontal lobe white matter,
left middle frontal gyrus, precentral gyrus). Graphs of MD in
significant clusters are presented in Figures 4C,D.

White Matter Tracts Integrity
Fiber tracking analysis revealed a statistically significant increase
in number of fibers in the left cingulum (p = 0.03) (Figure 5)
and in the right ILF following HBOT (p= 0.029) and in the right
Uncinate fasciculus (p= 0.04) (Figure 5).

Increased Brain Perfusion
Voxel-based DSC analysis was compared before and after HBOT
using paired t-test. Average CBV and CBF and delta whole brain
maps are depicted in Figure 5, and show the increase in both CBF
and CBV post HBOT.

TABLE 2 | Cognitive indices at baseline, and after Hyperbaric Oxygen Therapy

(HBOT).

Baseline Post HBOT Mean

change

Sig. Sig. with time

as covariate

Global 88.2 ± 2.5 96.4 ± 2.5 8.2 ± 1.5 *0.0001 0.0004

Memory 82.2 ± 5.3 92.7 ± 4.7 10.5 ± 2.4 *0.001 0.008

Executive

Functions

83.9 ± 3.8 95.2 ± 3.4 11.3 ± 2.7 *0.001 0.002

Attention 88.1 ± 3.5 96.3 ± 2.9 8.2 ± 4.0 0.062 0.105

IPS 84.3 ± 3.3 97.4 ± 3.8 13.1 ± 2.7 *0.0001 0.001

VSP 96.6 ± 4.0 105.3 ± 3.1 8.7 ± 3.0 *0.01 0.04

Motor skills 92.3 ± 4.1 98.2 ± 3.8 5.8 ± 2.0 *0.0009 (W)

Data are expressed as means± standard errors. IPS, Information processing speed; VSP,

Visual spatial processing; W, Wilcoxon signed-rank test. Bold values indicated statistically

significant p < 0.05.

FIGURE 1 | Cognitive indices relative changes post HBOT. Relative change in the corresponding cognitive indices after HBOT. Relative change was calculated by

(post HBOT-pre HBOT)/Pre HBOT. IPS, Information processing speed. *p < 0.05.
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FIGURE 2 | Average DTI normalized delta change in FA maps. Yellow and red areas show a statistically significant increase in FA (p < 0.05).

Regional Changes in Brain Perfusion
Statically significant increases in CBF involved frontal white
matter (including corpus callosum), association fibers (SLF,
IFOF), motor function-related structures (corona radiata,
midbrain, and cerebellum) and structures related to memory
function (temporal GM and fornix).

Statistically significant increase in CBV was found
in frontal white matter (including Uncinate fasiculus
and Corpus Callosum), frontal gray matter (anterior
cingulate), regions related to sensory-motor function and
executive functions (including the thalamus and midbrain)
association fiber tracts (SLF, ILF and cingulum) and regions
related to memory function (hippocampus and fornix)
(Figures 6, 7).

Most of the anatomic structures that presented a
significant increase in CBF also exhibited an increase in
CBV (Figure 6).

DISCUSSION

The current study shows, for the first time in humans, that
HBOT can induce brain microstructure recovery in TBI patients.
Brain recovery encompassed gray and white matter areas, white
matter tracts and angiogenesis. Post HBOT, FA increased and
MD decreased in the DTI sequence, CBV and CBF increased in

the DSC (perfusion) sequence, along with improved cognitive

functions. Recovery was induced in the late chronic stage of TBI
(6.7± 2.1 years post injury).

Previous studies using DTI have reported that patients

suffering from TBI may still have microstructural damage

months to years after the initial injury (Kraus et al., 2007; Yuan

et al., 2007; Lipton et al., 2008; Sugiyama et al., 2009; Hartikainen
et al., 2010; Niogi and Mukherjee, 2010; Murugavel et al., 2014;
Perez et al., 2014; Li et al., 2016). DTI characterizes the diffusion
of water in the tissues, thus it indicates microstructural density,
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FIGURE 3 | Average DTI normalized delta change in MD maps. Blue areas mark statistically significant decrease in MD (p < 0.05).

spacing, and orientational organization of cell membranes,
including myelin (Assaf and Pasternak, 2008; Alexander et al.,
2011). Animal studies of brain plasticity, revealed that decrease
in MD and increase in FA correlates with synaptophysin
(a marker of synaptic vesicles), glial fibrillary acidic protein
(GFAP; a marker of astrocyte activation), and brain-derived
neurotrophic factor (BDNF; a marker of neuronal growth that
facilitates learning) (Sagi et al., 2012). With regards to white
matter, it was found that myelin density estimated by DTI can
accurately predict the actual myelin density seen/measured by
electron microscopy (Sepehrband et al., 2015). The injury can
be demonstrated by increased water diffusion as measured by
MD and reduced directionality of diffusion as measured by FA,
suggesting that either axonal injury or disruption of myelination
could have altered brain connectivity (Kraus et al., 2007; Yuan
et al., 2007; Lipton et al., 2008; Sugiyama et al., 2009; Hartikainen
et al., 2010; Niogi and Mukherjee, 2010; Murugavel et al., 2014;
Perez et al., 2014; Li et al., 2016). Moreover, FA changes appear
to correlate with the severity of the clinical presentation (Benson
et al., 2007; Yuan et al., 2007). The observed decrease in FA

values may reflect the barriers to axoplasmic transport, the
local accumulation of apoptosis in organelles, and secondary
Wallerian degeneration in the white matter, while the increased
MD values may be the result of vasogenic cerebral edema.

Significant injury foci were reported in dedicated pathways
involved in the transmission of efferent and afferent information,
such as the corpus callosum, internal capsule, SLF, ILF, SFO,
superior frontal gyrus, insula, and fornix (Yuan et al., 2007;
Caeyenberghs et al., 2010). Importantly, the microstructure
injuries depicted by the DTI imaging markers, FA and MD,
correlated with objective measures of general and cognitive
functioning (Benson et al., 2007; Assaf and Pasternak, 2008;
Sugiyama et al., 2009; Caeyenberghs et al., 2010; Hartikainen
et al., 2010; Alexander et al., 2011; Sagi et al., 2012; Wada
et al., 2012; Arenth et al., 2014; Haberg et al., 2015; Sepehrband
et al., 2015; Li et al., 2016). Disorders in reaction time, executive
functions, information processing speed, attention and memory
were correlated with axonal lesions in different areas. Moreover,
in two recent longitudinal studies, FA values increased in patients
with favorable outcome within 6–12 months, while no DTI

Frontiers in Human Neuroscience | www.frontiersin.org 6 October 2017 | Volume 11 | Article 508

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Tal et al. HBOT Induces Regeneration in mTBI

FIGURE 4 | Graphs of FA and MD averages and standard error in statistically significant clusters. (A) Averages of FA before and after HBOT. (B) Normalized delta of

FA maps. (C) Averages of MD before and after HBOT. (D) Normalized delta of MD maps.

FIGURE 5 | White matter tractography change in a single patient. (A) Fibers number increase in the right ILF tract. (B) Fibers number increase in the left IFOF tract.

(C) Fibers increase in the right Uncinate tract.

changes registered in patients with unfavorable outcome (Sidaros
et al., 2008; Hartikainen et al., 2010).

In the current study, for the first time in humans, DTI changes
of chronic TBI were evaluated before and after HBOT. The

increase in FA and decrease in MD post HBOT, together with
cognitive function improvement of patients in the late chronic
stage of TBI, suggest that brain microstructure recovery can be
induced by HBOT.
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FIGURE 6 | Graphs of CBF and CBV averages and standard error in statistically significant clusters. (A) Averages of CBF before and after HBOT. (B) Averages of CBV

before and after HBOT.

DTI values, FA and MD, were found in our study to correlate
with the improvements in cognitive functions in concordance
with previous studies (Sugiyama et al., 2009; Wada et al., 2012;
Arenth et al., 2014; Haberg et al., 2015). Memory, executive
function and information processing speed were all significantly
improved. In correlation with these cognitive improvements,
MD decreased in most of the frontal lobe white matter, such as
the prefrontal cortex that enables executive control (Miller and
Cohen, 2001) and the anterior cingulate gyrus involved in error
detection, especially in a Stroop task (Bush et al., 2000). Also, FA
increased in most of the long association fibers critical for proper
cognitive function:

• SLF–Bi-directional connection of the hemispheric frontal,
parietal, temporal and occipital lobes. The SLF plays an
important role in high brain functions, particularly language,
reflected in information processing speed and executive
function tasks (Heilman et al., 1970; Rocha et al., 2005; Sasson
et al., 2013). In correlation with those changes, there was a
significant improvement in neurocognitive test results in both
information processing speed (IPS) and executive functions
(EF) (i.e., IPS: 13.1 ± 2.7, p < 0.0001; EF: 11.3 ± 2.7, p <

0.001).
• ILF–Connection between the temporal and occipital lobes on

the same hemisphere. The ILF is known to play an important

role in visual memory (Bauer and Trobe, 1984; Shinoura
et al., 2007). In correlation with those changes, there was a
significant improvement in the memory index, which includes
a visual memory task (i.e., Memory: 10.5± 2.4, p < 0.001).

• Cingulum – A cluster of white matter fibers projecting from
the cingulate gyrus in the frontal lobe to the entorhinal cortex
in the temporal lobe. The cingulum has been tightly associated
with memory disorders (Charlton et al., 2006; Sepulcre et al.,
2009). The memory correlates also with the changes in the
cingulum.

• Genu of the Corpus Callosum-The largest white matter
structure in the brain. It connects the left and right cerebral
hemispheres and facilitates interhemispheric communication.
Integrity of the corpus callosum is linked to information
processing speed and episodic memory (Bucur et al.,
2008; Lockhart and DeCarli, 2014). The improvement in
information processing speed and memory indices may also
correlate with the improvement in the genu of the corpus
callosum.

Mechanisms of neuroplasticity and cellular repair by HBOT
have been suggested in many animal studies (Hadanny
and Efrati, 2016). These include enhanced mitochondrial
function and cellular metabolism, improved blood brain barrier
and inflammatory reactions, reduced apoptosis, alleviation of
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FIGURE 7 | Changes in brain perfusion (CBF and CBV) post HBOT. (A) Average DSC maps pre and post HBOT and DSC normalized delta maps. Top row: CBF and

CBV pre-HBOT. Middle row: CBF and CBV maps post-HBOT. Bottom row: normalized delta maps, showing diffuse increases in CBF and CBV post-HBOT.

(B) Significant CBF and CBV normalized delta changes post HBOT. Areas of maximal statistically significant increase in perfusion.
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oxidative stress, increased levels of neurotrophins and nitric
oxide, and up-regulation of axonal guidance agents (Efrati et al.,
2013; Efrati and Ben-Jacob, 2014). Moreover, the effects of HBOT
on neurons may be mediated indirectly by glial cells. HBOT
may also promote neurogenesis of endogenous neural stem cells
(Efrati et al., 2013; Efrati and Ben-Jacob, 2014). HBOT may
enable the metabolic change simply by supplying the missing
oxygen/energy needed for these regeneration processes (Efrati
et al., 2013; Efrati and Ben-Jacob, 2014). The ability of HBOT to
induce angiogenesis was demonstrated in several different pre-
clinical studies (Mu et al., 2011; Lin et al., 2012; Lee et al., 2013;
Hu et al., 2014). Hu et al. have demonstrated that HBOT-induced
neurogenesis is mediated by ROS/HIF-1α/β-catenin pathway
(Hu et al., 2014). In the current study, it is demonstrated that
HBOT can induce neuroplasticity in humans even years after the
acute insult.

Along with the structural changes, HBOT induces
angiogenesis, as shown by the increase of CBF and CBV in
this study as well as in our previous study (Tal et al., 2015).
The injured areas in the brains post TBI experience hypoxia
and hypoperfusion, which serve as a rate-limiting factor for
any regenerative process (Graham and Adams, 1971; Graham
et al., 1978; Stein et al., 2004; Kim et al., 2010; Ostergaard et al.,
2014). HBOT-induced angiogenesis has been amply confirmed
in pre-clinical models and can be deduced from brain SPECTs
of patients post stroke and post TBI even years after the acute
insult (Lin et al., 2012; Boussi-Gross et al., 2013; Efrati et al.,
2013; Peng et al., 2014; Duan et al., 2015). The generation of
new microvessels renders the local environment non-hypoxic,
thus able to induce brain plasticity, enhance neurogenesis and
synaptogenesis and foster functional recovery (Chen et al., 2003;
Jiang et al., 2005). Unsurprisingly, CBV and CBF increased
in the long association fiber tracts discussed above, including
corpus callosum, association fibers (SLF, IFOF) and cingulum.
Angiogenesis and increased perfusion to the malfunctioning
tissue, seen in DSC, serve as infrastructure for the regenerative
process and the preservation of newly generated metabolic
functioning of the axonal microstructure seen in DTI.

Our study has several limitations. The major one is related
to lack of control group. However, one can hardly expect any
significant changes in DSC and DTI values or neurocognitive
improvement to occur spontaneously years after the acute
insult. The cognitive improvement seen here is in line with
our earlier randomized controlled trial on patients suffering
from mild TBI. In our previous randomized control study
it was clearly demonstrated that the control group had no
neurocognitive improvement (same cognitive tests used in the
current study) or significant change of in brain perfusion

measured by SPECT 1-5 years after the acute insult (Boussi-Gross
et al., 2013). Nevertheless, one can hardly expect any significant
changes in DSC and DTI values or neurocognitive improvement
occurring spontaneously years after the acute insult. In addition,
a previous randomized controlled trial with a control group
showed neurocognitive effects and brain perfusion improvement
using SPECT (Boussi-Gross et al., 2013).

CONCLUSION

HBOT can induce cerebral angiogenesis and recovery of brain
microstructure in patients with chronic cognitive impairments
due to TBI months to years after the acute injury. The increased
integrity of brain fibers correlates with the functional cognitive
improvement. The mechanism by which HBOT can induce brain
neuroplasticity can be demonstrated by highly sensitive perfusion
MRI and DTI. Further studies, using DTI - MRI, are needed in
order to gain better understanding of the neuroplasticity effect of
HBOT in a larger cohort of patients with different types of brain
injuries.
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