Hyperbaric oxygen and aerobic exercise in the long-term treatment of fibromyalgia: A narrative review

Kholoud M. El-Shewy, Ahmad Kunbaz, Mohamed M. Gad, Muneer J. Al-Husseini, Anas M. Saad, Yasser M. Sammour, Mohamed M. Abdel-Daim

Faculty of Medicine, Ain Shams University, Cairo, Egypt
Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
Cleveland Clinic Foundation, Cleveland, OH, USA
Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
Pharmacology Department, Suez Canal University, Ismailia, Egypt

ARTICLE INFO
Keywords: Fibromyalgia Hyperbaric oxygen therapy Exercise Multidisciplinary treatment

ABSTRACT
Chronic pain is one of the most common clinical presentations in the primary care settings. In the US, Fibromyalgia (FM) affects about 1–3% of adults and commonly occurs in adults between the ages of 40–50 years. FM causes widespread muscular pain and tenderness with hyperalgesia and allodynia and may be associated with other somatic complaints.

Hyperbaric oxygen therapy (HBOT) has been utilized and has recently shown promising effects in the management of FM and other chronic pain disorders. In HBOT, the intermittent breathing of 100% oxygen in a pressurized chamber where the pressure is higher than 1 atmosphere absolute (ATA) has been utilized. HBOT exhibits a significant anti-inflammatory effect through reducing production of glial cells and inflammatory mediators which results in pain alleviation in different chronic pain conditions. HBOT can also influence neuroplasticity and affects the mitochondrial mechanisms resulting in functional brain changes. In addition to that, HBOT stimulates nitric oxide (NO) synthesis which helps in alleviating hyperalgesia and NO-dependent release of endogenous opioids which seemed to be the primary HBOT mechanism of antinociception.

Moreover, aerobic exercise and meditative movement therapies (MMT) have gained attention for their role in pain alleviation through different anti-inflammatory and antioxidant mechanisms.

In this review, we aim to elucidate the different mechanisms of HBOT and aerobic exercise in attenuating pain as adjuvant therapy in the multidisciplinary treatment strategy of chronic pain, and more particularly fibromyalgia.

1. Introduction
Chronic pain is one of the most common complaints in clinical practice [1]. Pain complaints are defined as chronic when the complaints continue for more than three months which is the time that the normal tissue needs to heal [2]. A broad spectrum of conditions including neuropathic pain, complex regional pain syndrome, migraine, and fibromyalgia have been implicated as causes of chronic pain condition [3].

Fibromyalgia (FM) is a chronic musculoskeletal disease that affects up to 1–3% of adults in the United States. It commonly occurs in adults between the ages of 40–50 years [4]. FM causes widespread muscular pain and soft tissue tenderness with hyperalgesia and allodynia. Allo- dynia is defined as an increased nervous system responsiveness to non-painful stimuli which can occur three different forms: a tactile form, which is caused by touch, a mechanical form, which is caused by

Abbreviations: ATA, atmosphere absolute; CCI, chronic constriction injury; CREB, cAMP response element-binding protein; CRP, C-reactive protein; CSF, cerebrospinal fluid; eNOS, endothelial nitrate oxide synthase; FM, fibromyalgia; GR, glucocorticoid receptor; HBOT, hyperbaric oxygen therapy; iNOS, inducible nitrate oxidase synthase; MMT, meditative movement therapies; NMDA, N-methyl-D-aspartic acid; NO, nitric oxide; ROS, reactive oxygen species; TCA, tricarboxylic acid; TNF, tumor necrosis factor

* Corresponding author at: Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Loftly Elsayed Street, Cairo, 11566, Egypt.
** Corresponding author at: Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
E-mail addresses: Anassaad256@gmail.com, anassaad@med.asu.edu.eg (A.M. Saad), abdeldaim.m@vet.suez.edu.eg (M.M. Abdel-Daim).

Received 6 August 2018; Received in revised form 13 October 2018; Accepted 25 October 2018
0753-3322/ © 2018 Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
movement over the skin and, and a thermal form, which is caused by heat or cold which would not normally cause damage to your tissues [5]. FM is usually associated with other somatic complaints, sleep disturbances, anxiety, cognitive dysfunction, and depressive symptoms [6].

The symptoms significantly impact the quality of life, employment, as well as cause an economic burden on the affected individuals [5,7]. Therefore, a better understanding of the underlying disease process and possible treatment mechanisms can help these patients with a multi-disciplinary treatment approach that includes medications, aerobic exercises, meditative movement therapies, as well as cognitive behavioral therapies [1,4,8,9].

Recently, Hyperbaric oxygen therapy (HBOT) has shown beneficial effects in managing chronic pain conditions such as cluster headaches [10,11]. In addition to that, HBOT has been found helpful in patients with complex regional pain syndrome, idiopathic trigeminal neuralgia, fibromyalgia and migraines [12–15]. It is done by intermittently breathing 100% oxygen in a pressure chamber where the pressure is higher than 1 atmosphere absolute (ATA). It is usually administered at 1 to 3 ATA and lasts from 30 to 120 min. The anti-inflammatory effects exhibited may lead to glial function changes and rectification of the abnormal FM-associated brain activity [16–18].

In this review, we aim to illustrate the mechanisms of HBOT and aerobic exercise, and the consequent beneficial roles in attenuating pain as adjunct therapies in the treatment strategy of chronic pain, and specifically fibromyalgia.

2. Hyperbaric oxygen treatment for fibromyalgia, the role of action and possible mechanisms

FM can occur after long-lasting mental or physical stress, viral, bacterial or parasitic infection [19,20]. Evidence showed that reactive oxygen species (ROS) and oxidative stress play a significant role in mitochondrial dysfunction in FM patients [21]. These patients have degenerative muscular changes, abnormal oxygen pressure, and lower blood flow in the muscles from local hypoxia [14,22–24]. Approximately, mitochondria use up to 80% of inhaled oxygen to produce ATP [25,26] with local ischemia causing higher levels of free radicals that induce apoptosis, reduce ATP synthesis and increase lactate concentrations in muscle cells which results in muscle weakness and pain [27,28].

HBOT causes hyperoxia that amplifies the tissue-cellular diffusion gradient of oxygen, which as a result raises plasma dissolved oxygen to a level that exceeds the physiological needs of many tissues at rest [29]. HBOT also accelerates wound healing by promoting epithelialization and oxygen-dependent collagen matrix formations needed for angiogenesis. Furthermore, HBOT prevents leukocyte adhesion that contributes to the release of free radicals and proteases, thus protecting cells from pathologic vasoconstriction and cellular damage during reperfusion. HBOT also enhances neutrophil oxygen-dependent microbial killing, reduces edema and inhibits lipid peroxidation in hypoxic tissues [29–31].

It is well accepted that HBOT results in increased reactive oxygen species (ROS) [32–35]. Some studies suggested a correlation between ROS levels and higher HBOT exposure time [33,34]. However, some studies have indicated that HBOT could reduce oxidative stress when used in pathologic conditions by decreasing the activation of caspase 3 and 9 [35,36]. Furthermore, it has been shown that some ROS produced by HBOT such as superoxide could contribute to the HBOT’s beneficial properties [31]. These controversial findings manifest the need for a clear understanding of the therapeutic mechanisms of HBOT.

One of the potential mechanisms regarding HBOT is related to its ability to preserve mitochondrial functions as one study showed that HBOT is associated with increased expression of the anti-apoptotic protein (Bcl-2) at the injury site and thus inhibiting apoptosis [37]. Palzur et al. studied HBOT ability to maintain mitochondrial function and decrease the activation of apoptosis in models of traumatic brain injury. They found that mitochondrial trans-membrane defects were restored with HBOT compared to the control group, and assumed that this was due to the effects of HBOT in increasing Bcl-2 expression and intracellular oxygen availability [35]. Another mitochondrial mechanism regarding mitochondrial respiratory chain dysfunction at the levels of complex IV, which induces motor neuron disease in Wobbler mouse; a mouse model of human motor neuron disease [38]. Dave et al. investigated the possible effect of HBOT on mitochondrial integrity in the Wobbler mice, monitored the progression of the disease in both groups HBOT and controls of the Wobbler mice, and noticed a significant delay in the disease onset within HBOT group, suggesting the role of HBOT in protecting motor cortex and spinal cord mitochondria from complex IV dysfunction in Wobbler mouse [39,40].

The International Association for the Study of Pain (IASP) defines neuropathic pain as pain caused by a lesion or disease of the somatosensory system; and due to the lack of evidence regarding any structural abnormalities in FM patients, there has been an ongoing debate about FM possible classification as neuropathic pain [41]. It is plausible that FM results mainly from a functional abnormality of pain processing pathways causing hyperalgesia (hypereexcitability of the CNS neurons) as the patients show increased sensitivity to a wide range of stimuli [42,43]. Another theory was hypothesized by Sörensen et al. who argued that the up-regulation of central nociceceptors following inflammation may cause chronic hyperalgesia in FM patients [44]. In addition to that, Inflammation and immune mechanisms may play an important role in the development of neuropathic pain and hyperalgesia [45,46]. Chronic hyperalgesia and neuropathic pain might be the result of inflammatory mediators, including cytokines such as, interleukins 1 and 6 (IL-1, IL6) and tumor necrosis factor (TNF), which activate/accelerate sensitization of afferent fibers without actual sensory damage [47–49]. When central sensitization occurs, only minimal stimulus with nociceptive input is enough to maintain the sensitized state and clinical pain [50]. To investigate neuropathic pain, researchers usually use a model of chronic constriction injury (CCI) of the sciatic nerve [51]. The CCI model was shown to have higher astrocyte activation supplemented by a higher expression of nerve injury-induced molecules such as c-Fos in the spinal dorsal horn [52]. Similarly, Thompson et al. proved the efficacy of HBOT to achieve lower pain behavior and mechanical hypersensitivity in CCI rats [53]. Gu et al. looked into HBOT potential role in neural protection; repetitive HBOT led to a significant, transient inhibition of thermal hyperalgesia, while long-term HBOT induced long-term inhibition of both thermal and mechanical hypersensitivity [14]. Furthermore, Zhao et al. investigated the possible association between HBOT and antinoceptive response in CCI animal model and found that a single HBOT session induced a short-term antinoceptive response and inhibited mechanical and thermal hyperalgesia, while multiple HBOT sessions induced a long-term response, inhibit astrocytes activation and aggravated neuropathic pain [54]. In addition to that, a study by Inamoto et al. indicated the immunosuppressive role of HBOT, significantly reduced both IL-1 and prostaglandin E2 production [55]. In contrast to that, Li et al. found that HBOT alleviated neuropathic pain by inhibiting TNF-α production, but not IL-1β [56], similarly to thalidomide administration in the CCI model [57]. These differences may be explained due to the independent mechanisms of TNF-α and IL-1 in inducing neuropathic pain in the CCI model [58,59].

Nitric oxide (NO) has an important role in the vasoconstriction response to hypoxia and is considered a potent anti-inflammatory molecule through endothelial nitrate oxide synthase (eNOS) activation in the brain [60,61]. Pain sensitivity in FM patients increased significantly with NO synthesis by enhancing positive modulation of N-methyl-o-aspartic acid (NMDA) receptors and increased levels of excitatory amino acids (e.g. glutamate) within the cerebrospinal fluid (CSF) [62]. NMDA receptors along with downstream signaling molecules have a well-documented role in neural plasticity and neuropathic pain [63].
addition, low levels of NO facilitated cAMP-dependent PGE2 led to hyperalgesia, whereas higher levels of NO produced a CGMP-dependent hyperalgesia in the primary afferents [64]. Another controversial study by Sackner et al. concluded that ‘whole body periodic acceleration’, which is a passive exercise technology that leads to NO release from eNOS through increased pulsatile shear stress, alleviates pain and causes NO release into the blood circulation of FM patients [65]. Furthermore, it might also play a role in the central mechanisms of analgesia and nociception as it increases opioid analgesia in patients with chronic pain [66]. Ohagmi and colleagues investigated the anti-nociceptive HBOT mechanism dependence on neuronal NO and found that the short-term anti-nociceptive result of HBOT was completely abolished following selective inhibition of NO secretion. They concluded that HBOT stimulation of NO synthesis is critical for its mechanism in alleviating hyperalgesia [67]. A subsequent study by Zelinski et al. found that HBOT led to NO-dependent release of endogenous opioids by activation κ and μ opioid receptors in the spinal cord, which seemed to be the primary HBOT mechanism of anti-nociception [68,69]. Furthermore, Han et al. investigated whether HBOT analgesia mechanism could affect NO expression in CCI model, they found higher number of inducible nitric oxide synthase (iNOS) neurons, which has a regulatory consequence on neuropathic pain, within the spinal cord of both pre-HBOT and post-HBOT groups, but no significant increase was found regarding eNOS [70,71]. This provides a possible explanation for the assumption that NO is ubiquitous in the nervous tissue and can exert both excitatory and inhibitory effects, based on its modulation of different neurotransmitter systems [72,73].

Beside animal and lab studies, there has been new clinical evidence supporting the effectiveness of HBOT as a treatment for FM. Yildiz et al. started a randomized controlled study to investigate whether HBOT has a positive role in managing FM patients [12]. They randomly divided patients either to receive HBOT or normal air, and they then examined patients before and after the first and fifteenth sessions of treatment. They found statistically significant improvement in the HBOT group for pre-defined clinical indicators after the first and fifteenth session. There were significant differences between the HBOT group and the controls as well, suggesting an important role of HBOT in relieving FM pain [12]. In addition to that, following the induction of inflammatory pain by carrageenan (Sigma) subcutaneous injection in rats, HBOT showed evidence to decrease mechanical hyperalgesia and inflammation. However, it did not consistently improve anti-inflammatory activity following diclofenac injections [74,75].

Despite some safety concerns, HBOT is a potential treatment approach for FM patients through its efficacy to increase oxygen delivery, inhibit pain and produce an anti-inflammatory response and the mechanisms of this role are illustrated in Fig. 1.

3. Role of aerobic exercise in fibromyalgia treatment

Over the last two decades, the effects of aerobic exercise have been studied as a part of the multimodal treatment strategies for conditions associated with chronic pain [6]. Besides the anti-inflammatory role of aerobic exercise, it has been found to exert a beneficial effect on the mitochondrial pathways and biogenesis, as well as the psychiatric element of FM symptoms [6]. These effects are illustrated in Fig. 2. Aerobic exercise consists of activities like jogging, walking, cycling, and dancing as well as aquatic exercises. Doing aerobic exercise is thought to help control blood sugar, lower blood pressure and improve the circulation [76,77]. A well-established effect of aerobic exercise is mitochondrial biogenesis which includes increased number and volume of muscle mitochondria, along with changes in the organelle composition [78]. Such mitochondrial changes cause a relatively small increase in maximal oxygen uptake (VO2 max) which reflects the whole body aerobic condition. This effect occurs as a result of an increase in proteins that are involved in mitochondrial ATP production, and an improvement of the tricarboxylic acid (TCA) cycle, fatty acids metabolism, glucose transport, glycolytic metabolism, antioxidant effect, oxygen delivery, and oxygen extraction from skeletal muscle [79–81].

FM pathogenesis is hypothesized to include muscle abnormalities such as reduction of type II muscle fibers, low levels of adenosine triphosphate, and damage of nerve fibers [82]. These abnormalities result in abnormal muscle metabolism and clinically cause weakness, fatigue, and muscle pain [83]. Aerobic exercise increases the activity of metabolic enzymes and mitochondrial density enhancing respiratory control sensitivity. Therefore, lower concentrations of [ADP] are utilized when using the same amount of oxygen per gram of muscle, thus a lower oxidative phosphorylation rate per mitochondrion [84].

In addition to that, one of the popular hypotheses regarding FM etiology is the inflammatory and neuroendocrine theory supported by the findings of high circulating concentrations of IL-8, IFN gamma, and C-reactive protein (CRP) along with cortisol in FM patients. Exercise programs could exert an anti-inflammatory effect and achieve a significant decrease in IL-8, IFN gamma, CRP and circulating concentrations of cortisol [85].

Also, FM has been associated with mood and psychiatric disorders that may result from hypothalamic-pituitary axis abnormalities, and interactions between biological, psychological, and behavioral mechanisms [82,83]. Aerobic exercise stimulates the hypothalamus causing increased levels of neurotransmitters such as endorphins, and this effect helps to decrease pain sensation and to improve mood state and sleep [86,87]. Doing physical exercise enhances sleep and reciprocally having a higher quality of sleep improves the physical activity of patients with chronic pain conditions [88].

In 2008, a systematic review involving 2276 subjects across 34 studies assessed the efficacy of aerobic exercise for fibromyalgia and reported improvement in the following domains: pain, global well-being, and physical function [89]. In 2017, the update of that systematic review provided moderate-quality evidence about the effectiveness of aerobic exercise to improve the health-related quality of life, and low-quality evidence about the role of aerobic exercise in decreasing pain and improving physical function [90]. This is consistent with the 2017 revised European League Against Rheumatism (EULAR) report [91].

Meditative movement therapies (MMT), including Qigong, Tai Chi or Yoga, represent one of the non-pharmacological therapies that have been engaged in the multidisciplinary treatment approach to chronic pain conditions [92,93]. Qigong and Tai Chi are traditional Chinese exercises that involve body movement and breathe training to improve health. Yoga is an ancient Indian, mind-body approach with a focus on meditation, breathing, and activity or postures [93].

A yoga program that involves breathing and meditative techniques, S Kriya and its associated practices (SK&P), was found to increase glutathione S-transferase mRNA expression along with the levels of glutathione peroxidase, superoxide dismutase activities and glutathione [94]. Also, this program increased the antioxidant genes Cu-Zn and Mn-SOD, and catalase [95]. These findings may elucidate the antioxidant role of yoga practice through its impact on relevant genes expression.

MMT exert an anti-inflammatory effect through decreasing the sympathetic activity and increasing the parasympathetic activity [96,97]. Morgan et al. have found that MMT for eight to twelve weeks caused a reduction of C-reactive protein (CRP) concentrations [98]. Vijayaraghava et al. showed that yoga could reduce the inflammatory response by lowering TNF-α and IL-6 levels [99].

It has also been suggested that tai chi and yoga reduce cAMP response element-binding protein (CREB) family transcription factors activity. This altered response will consequently lead to a reduction in the sympathetic nervous system signaling through β-adrenergic receptors, as well as a reduction in the nuclear factor NF-κB activity [100,101]. In addition to that, Tai Chi, and yoga have been shown to modulate the glucocorticoid receptor sensitivity and increase the anti-inflammatory glucocorticoid receptor (GR) signaling [101,102]. All these mechanisms are illustrated in Fig. 3.
Fig. 1. Effects of using hyperbaric oxygen therapy in the management of fibromyalgia.

Fig. 2. Effects of using aerobic exercise in the management of fibromyalgia.

Fig. 3. Effects of using meditative movement therapies in the management of fibromyalgia.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Dose of oxygen</th>
<th>Main method</th>
<th>Outcomes</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yildiz 2004</td>
<td>A new treatment modality for fibromyalgia syndrome: hyperbaric oxygen therapy</td>
<td>HBOT at 2.4 ATA for 90 min a day, 5 days each week for 3 weeks (15 sessions). Control group: breathed air at 1 ATA for the same period.</td>
<td>Randomized control study included patients with FMS who had persistent symptoms despite medical or physical therapy were divided randomly into 2 groups: 26 patients in the HBOT group and 24 patients in the control group. Patients were examined before and after the first and fifteenth therapy sessions. At each examination, the number of tender points, visual analog scale (VAS) and the pressure pain threshold were measured.</td>
<td>After the first and fifteenth therapy sessions, there was a significant reduction in tender points and VAS scores and a significant increase in pain threshold of the HBOT group. There was also a significant difference between the HBO and control groups for all parameters except the VAS scores after the first session.</td>
<td>HBOT successfully break pain-hypoxia vicious cycle since it decreased the tender points and VAS pain scores by increasing the pain threshold.</td>
</tr>
<tr>
<td>Efrati 2015</td>
<td>Hyperbaric oxygen therapy can diminish fibromyalgia syndrome - Prospective clinical trial</td>
<td>HBOT at 2.0 ATA for 90 min a day, 5 days each week for 8 weeks (40 sessions).</td>
<td>A prospective active control, clinical trial on 60 female FMS patients who were diagnosed at least 2 years prior to the inclusion. Randomly divided into 2 groups: treated group and crossover group. Patients in the treated group were evaluated twice – at baseline and after 2 months of HBOT. Patients in the crossover group were evaluated three times: baseline, after 2 months control period (no treatment), and after subsequent 2 months of HBOT. Measurements: Tender point count, pain threshold, FIQ, SCL-90, SF-36 scores and brain activity according to SPECT imaging.</td>
<td>- The FIQ, SCL-90 and SF-36 scores significantly improved following HBOT in the treated and in the crossover group after HBOT. - Analysis of SPECT Imaging following HBOT revealed rectification of the abnormal brain activity: decrease of the hyperactivity mainly in the posterior region and elevation of the reduced activity mainly in frontal areas. - HBOT led to a significant decrease in the intake of pain medications by the patients. - HBOT in both groups led to significant amelioration of all FMS symptoms, with significant improvement in life quality.</td>
<td></td>
</tr>
<tr>
<td>Akarsu 2013</td>
<td>The efficacy of hyperbaric oxygen therapy in the management of chronic fatigue syndrome.</td>
<td>HBOT at 2.4 ATA for 90 min a day, 5 days each week for 3 weeks (15 sessions).</td>
<td>15 patients with CFS. The assessment was made before the treatment and after the completion of 15 sessions. Measurements: VAS, FSS, FQLS.</td>
<td>After HBOT; VAS, FSS, and FQLS scores improved significantly with no complications.</td>
<td>HBOT decreased the severity of symptoms and increased the life quality of CFS patients.</td>
</tr>
<tr>
<td>Gu 2012</td>
<td>Hyperbaric oxygen therapy attenuates neuropathic hyperalgesia in rats and idiopathic trigeminal neuralgia in patients</td>
<td>HBOT at 2 ATA for 70 min a day with 5 min intervals after 35 min period, for 10 days.</td>
<td>Clinical trials on patients with idiopathic trigeminal neuralgia. These patients were taking sufficient doses of CBZ for keeping patient pain at a minimum. They were divided into 2 groups, HBOT (n = 20) and HBOT sham control group (n = 22). Assessment was made at day 1,30,60,90,120,150 and 180 after HBOT. Measurements: VAS and mean dose of CBZ.</td>
<td>VAS evaluation indicated that HBOT reduced pain in most patients (60–75%) with no side effects. HBOT group showed a decreased doses of carbamazepine required for keeping patient pain at a minimum.</td>
<td>HBOT showed to decrease the severity of symptoms.</td>
</tr>
</tbody>
</table>

Abbreviations: ATA = atmospheres absolute, CBZ = carbamazepine, CFS = chronic fatigue syndrome, FIQ = Fibromyalgia Impact Questionnaire, FSS = fatigue severity scale, FMS = Fibromyalgia Syndrome, FQLS = fatigue quality of life score, HBOT = Hyperbaric oxygen therapy, SCL-90 = symptom questionnaire, SF-36 = Quality of life questionnaire, SPECT = single photon emission computed tomography, VAS = visual analogue scale.
Table 2
Clinical uses of aerobic exercise in fibromyalgia.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Main methods</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.M. El-Shewy et al. 2011</td>
<td>Twelve healthy, sedentary, males volunteered.</td>
<td>Eight healthy, sedentary, males volunteered to participate in the study. The subjects were divided into 2 groups (A and B). Each group trained for 10 weeks, with 3 sessions per week at the same intensity level. Training for 2 weeks was discontinued in group B.</td>
</tr>
<tr>
<td>Reference</td>
<td>Model used</td>
<td>Main methods</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Scheef 2012</td>
<td>Twenty right-handed healthy male athletes</td>
<td>Each subject participated in 2 different treatment conditions, walking (Walk, control condition) and running (Run, endurance exercise as an experimental condition), in a randomized, counterbalanced within-subject design (group I: Walk/Run, N=10; group II Run/Walk, N=10). The experimental and control conditions were conducted on separated days, with a mean interval between examination days of 55 ± 49 days.</td>
</tr>
<tr>
<td>Vijayaraghava 2015</td>
<td>Two hundred and eighteen subjects participated in the study.</td>
<td>One hundred and ninetynine volunteers (51 males and 58 females) in the age group of 20 to 60 years, who practiced yoga regularly for over five years for a period of one hour daily, performed a test of moderate intensity and one hour outdoor Walking (Walk, control) or Running (Run, endurance exercise as an experimental condition). The time delay between the end of the exercise challenge/control condition and the pain fMRI experiment was approximately 45 minutes. The duration of the entire procedure per subject and day was approximately 6 hours.</td>
</tr>
<tr>
<td>Bower 2014</td>
<td>31 stage 0-II breast cancer survivors who had completed local and/or adjuvant therapy at least 6 months earlier.</td>
<td>Women were randomized to either a 12-week long period of yoga intervention (n = 10) or to a healthy education control condition (n = 15). The yoga group showed reduced activity of the pro-inflammatory transcription factor nuclear factor kappa B (NF-kB), increased activity of the anti-inflammatory glucocorticoid receptor, and reduced activity of cAMP response element-binding protein (CREB) family transcription factors relative to controls (p < 0.05). There was also a significant change in TNF-α levels. No significant changes in C-reactive protein (CRP), interleukin 6 (IL-6), or cortisol measures were observed.</td>
</tr>
<tr>
<td>Irwin 2015</td>
<td>123 older adults with insomnia</td>
<td>Each group participated in 120 minutes of daily time weekly for 4 months with 7- and 16-month follow-up.</td>
</tr>
</tbody>
</table>

Table 2 (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Model used</th>
<th>Main methods</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A randomized controlled trial included 53 patients with FM with the aim of evaluation of the effectiveness of a specific form of yoga in the treatment of FM. The results revealed more significant improvements in pain, fatigue, and mood among the group of patients who practiced yoga [103].

Interestingly, a recent randomized trial involving more than 200 patients with fibromyalgia was conducted to compare the effectiveness of tai chi with aerobic exercise. The results highlighted that tai chi was at least or more effective than aerobic exercise, a standard therapy for this disorder. After 24 weeks, tai chi caused more significant improvements than aerobic exercise regarding symptom impact. Also, a longer duration of tai chi (24 weeks) was more effective than a shorter period (12 weeks) [104].

4. Clinical use of hyperbaric oxygen in the therapy of fibromyalgia

Hyperbaric oxygen therapy has been utilized in medicine since the early 19th century. For many years it has been used mainly as a therapy for decompression thickness for divers. However, it has been gaining more ground as a clinically utilized modality for the treatment of multiple medical conditions [105]. The prospect of using hyperbaric oxygen therapy for fibromyalgia is promising yet controversial due to lack of large-scale clinical trials to support it and due to the contradicting current evidence on whether it should be used as adjuvant therapy or as stand-alone primary therapy [106] (Tables 1 and 2).

Clinical trials are investigating the use of hyperbaric oxygen for fibromyalgia with promising results [18]. A positive correlation between hyperbaric oxygen use and the improvement of the fibromyalgia symptoms has been illustrated with an association between brain changes and the response to therapy [18]. The theory that fibromyalgia is associated with altered brain activity has been further supported with reported with an increased incidence of fibromyalgia in the setting of traumatic brain injury [107]. However, a conflict between the origin of the neurologic dysfunction exists among researchers with some reports considering the etiology to be more peripheral rather than central and caused by an inflammation of small peripheral nerve fibers [108]. Conversely, other complex pain syndromes have been reported to respond to this therapy, including; trigeminal neuralgia, cluster headaches, and migraines, this further rectifies the theory that the neurologic dysfunction is altered brain activity rather than inflammation of peripheral nerves [13].

The use of hyperbaric oxygen therapy is debated to be used as a sole therapeutic agent versus as an adjuvant therapy used in addition to the traditional agents used routinely in patients with fibromyalgia [12]. Patients with a diagnosis of fibromyalgia are treated by education regarding the disease prognosis, importance of good sleep hygiene, association with other psychiatric comorbidities [109]. In addition to patient education, patients are usually started on an exercise regimen and sometimes on a low dose pharmacological treatment [109]. Hyperbaric therapy has been associated with decreased activity in the posterior brain lobes as well as increased activity in the frontal, parietal, temporal lobes, and the cerebellum [110]. In addition to its function in changing brain activity, HBOT decreases the use of medications for pain control as it has anti-inflammatory effects as well as reducing sensitivity to painful stimuli [111]. Those effects are anticipated considering that fibromyalgia has been associated with increased sensitivity to pain stimuli as well as altered brain function.

5. Conclusion

It has been known that HBOT and aerobic exercise have a promising role in chronic pain management. This role is mediated through different mechanisms that target the reduction of inflammation, mitochondrial dysfunction, and pain which represent the backbone of the pathogenesis of chronic pain disorders especially fibromyalgia. Despite such beneficial effects, there are safety concerns regarding the oxidative damage that may follow HBOT. Further studies and clinical trials are recommended to evaluate the efficacy, the risk/benefit, and the safety of HBOT and aerobic exercise in the management of FM and other chronic pain disorders to reach an optimal treatment protocol.

Competing interests

All authors have no competing interests to declare.

Funding

None.

Acknowledgement

None.

References

